Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Butelase 1 : the fastest known ligase for protein cyclization and ligation

Authors: Chen, Shu Bee;

Butelase 1 : the fastest known ligase for protein cyclization and ligation

Abstract

Peptide cyclization confers increased conformational stability and rigidity against metabolic and thermal denaturation. Encouraged by potential usage of cyclic peptides in the therapeutic applications, methods of protein cyclization and ligation have been developed such as native chemical ligation, intein-, PatG- and sortase A- mediated transpeptidase activity. However, with various kinds of limitations in restricting the practical applications, a natural occurring ligase, butelase 1 has been discovered and isolated from Clitoria ternatea recently. Here, I perform the enzyme kinetics characterization of butelase 1 for cyclization of various peptides of plant and animal origin and explore the potential applications in mediating intermolecular ligation. With the kcat value up to 4 s-1 and the catalytic efficiency of 71,384 M-1s-1, butelase 1 is the fastest known ligase. Butelase 1, an Asn-specific ligase, cyclizes various bioactive peptides quantitatively in a head-to-tail manner with conversion yield >95% and displays broad substrate specificity. Moreover, it is useful for introducing a functional group such as biotin and fluorophore to proteins by using GFP, monoclonal antibody and darpin as model proteins. The results show that butelase 1 would play an important role in the future bioengineering and pharmaceutical applications. Bachelor of Science in Biomedical Sciences

Country
Singapore
Related Organizations
Keywords

:Science [DRNTU]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average