Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Zero-knowledge proof systems for lattice-based cryptography

Authors: Nguyen, Ta Toan Khoa;

Zero-knowledge proof systems for lattice-based cryptography

Abstract

Lattice-based cryptography is one of the most active research topics in cryptography in recent years. In many cryptographic constructions based on lattice assumptions, the building block is a proof of knowledge of a solution to an instance of the Inhomogeneous Small Integer Solution (ISIS) problem. However, all known such proof systems have relatively weak security guarantees: Breaking each of these protocols is potentially easier than solving the underlying instance of the ISIS problem. As a consequence, cryptographic constructions relying on these proof systems typically inherit the sub-optimal security guarantees. Therefore, proof systems with stronger security guarantees are highly desirable. Such protocols are not only interesting from a theoretical point of view, but they also lead to lattice-based cryptographic constructions relying on weaker hardness assumptions than the contemporary schemes. In this thesis, we construct a series of zero-knowledge proofs of knowledge with strong security guarantees and reasonable communication costs, that can find various applications in lattice-based cryptography. Our constructions rely on a simple, yet versatile and effective technique, called Decomposition-Extension. When adapting this technique to the Stern-KTX proof system (Stern ‘96 - Kawachi, Tanaka, Xagawa ‘08), we obtain a zero-knowledge proof of knowledge for the ISIS problem (in the infinity norm) with a very strong security guarantee: Breaking the protocol is as least as hard as solving the underlying ISIS instance. We then develop our technique to design the following lattice-based cryptographic constructions: - Efficient zero-knowledge proofs of plaintext knowledge with strong security guarantees for 4 encryption schemes based on the Learning with Errors problem: Regev’s scheme (Regev ‘05); the Dual-Regev scheme (Gentry, Peikert, Vaikuntanathan ‘08); the PVW scheme (Peikert, Vaikuntanathan, Waters ‘08); and the GHV scheme (Gentry, Halevi, Vaikuntanathan ‘10). Our results immediately yield 4 lattice-based interactive encryption protocols that are secure under chosen ciphertext attacks. Previously, only zero-knowledge proofs of plaintext knowledge for Regev’s scheme were known, and they are relatively inefficient with rather weak security guarantees. - A lattice-based identity-based identification scheme relying on a weaker hardness assumption than in the previous works. Furthermore, we introduce an identity-based ring identification scheme based on the worst-case hardness of lattice problems. To the best of our knowledge, this is the first such scheme. - An improved lattice-based group signature scheme relying on relatively weak hardness assumptions, in which the signature size is logarithmic in the number of group users. Earlier lattice-based group signature schemes, which were published before 2013, rely on relatively weak hardness assumptions but have the undesirable property that the size of the signature is linear in the number of group users. A recent scheme (Laguillaumie, Langlois, Libert, Stehlé ‘13) achieves logarithmic signature size but it has to rely on relatively strong hardness assumptions. Our construction, thus, simultaneously achieves the good features of the existing schemes. ​Doctor of Philosophy (SPMS)

Country
Singapore
Related Organizations
Keywords

:Science::Mathematics::Discrete mathematics::Cryptography [DRNTU]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green