Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digital Repository o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling heavy-tailed insurance claim data using the hyper-erlang distribution with common scale parameter

Authors: Seet, Angeline Yuen Chee; Yang, Bowen; Yeoh, Yun Wei;

Modelling heavy-tailed insurance claim data using the hyper-erlang distribution with common scale parameter

Abstract

When modelling positively skewed insurance claim data, traditional distributions such as lognormal and Weibull often fail to accurately estimate the tail. Several methods have been developed to improve tail estimation without compromising the body fitting, including the transformed kernel density and the generalised lambda distribution. In this study, we investigate the robustness of a promising method, fitting of the hyper-Erlang distribution with a common scale parameter. A modified version of the Expectation Maximisation (EM) algorithm is used for distribution fitting, with some changes we proposed to improve the efficiency of the algorithm. Results from a preliminary study we conducted suggest that different initial estimates of the common scale parameter affect the performance of the modified EM algorithm. For fitting medical claim data provided by the Society of Actuaries, bootstrap samples are taken to determine an optimal initial estimate for the scale parameter. With this estimate, the hyper-Erlang distribution is able to provide a satisfactory fit to the data. The result is comparable to those produced by transformed kernel density and generalised lambda distribution. BUSINESS

Country
Singapore
Related Organizations
Keywords

:Business::Finance::Insurance claims [DRNTU]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average