Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YÖK Açık Bilim - CoH...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Esnek kategoriler

Authors: Erdoğan Sert, Aysun;
Abstract

Bu tez çalışmasında ilk olarak esnek fonksiyon tanımı kullanılarak esnek kümelerin ve esnek fonksiyonların kategorisi tanımlanmış ve bu kategori SFun ile gösterilmiştir. SFun kategorik yapısı için esnek monomorfizm, esnek epimorfizm tanımlanmış, bu esnek morfizmlerle ilgili bazı özellikler elde edilmiştir. Daha sonra esnek kesit tanımlanmış olup, esnek kesit ve esnek monomorfizm arasındaki ilişki sunulmuştur. Bununla birlikte esnek retraksiyon tanımı verilerek esnek retraksiyon ve esnek epimorfizm arasındaki ilişki elde edilmiştir.Esnek izomorfizm tanımlanarak, esnek izomorfizmin esnek monomorfizm, esnek epimorfizm, esnek retraksiyon ve esnek kesit ile olan ilişkilerini ifade eden önerme ve teoremler elde edilmiş ve ispatlanmıştır. SFun kategorisi için başlangıç ve bitiş nesneleri tanımlanarak bu nesnelerin esnek izomorfizmaya bağlı olarak tek olduğu ispatlanmıştır.Son olarak SFun kategorisinde sıfır nesnesi tanımlanmış, sıfır nesnesine sahip olan SFun kategorisi için bazı özellikler sunulmuştur.

In this thesis study, at first the category of soft sets and soft functions is defined by using the definition of soft function and this category is sembolized by SFun.Soft monomorphism and soft epimorphism are defined for SFun categorical structure and some properties are obtained dealing with these soft morphisms.Afterwards, soft section is defined and the connection between soft section and soft monomorphism is stated. Moreover definiton of soft retraction is given and the connection between soft retraction and soft epimorphism is obtained.By defining soft isomorphism some theorem and prepositions which state the connections between soft monomorphism, soft epimorphism, soft retraction and soft section are obtained and proved.Initial and terminal objects are defined for the category SFun and it is proved that this objects are unique up to soft isomorphism.Finally, zero object is defined for the category SFun and some properties are stated for the category SFun which has zero object.

53

Keywords

Matematik, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average