Powered by OpenAIRE graph
Found an issue? Give us feedback
Bloodarrow_drop_down
Blood
Article . 2003 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2003
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A defect in hematopoietic stem cell migration explains the nonrandom X-chromosome inactivation in carriers of Wiskott-Aldrich syndrome

Authors: Catherine Lacout; Loïc Garçon; Loïc Garçon; Rym Mzali; Rym Mzali; Fedor Svinarchouk; Fedor Svinarchouk; +16 Authors

A defect in hematopoietic stem cell migration explains the nonrandom X-chromosome inactivation in carriers of Wiskott-Aldrich syndrome

Abstract

AbstractA defect in cell trafficking and chemotaxis plays an important role in the immune deficiency observed in Wiskott-Aldrich syndrome (WAS). In this report, we show that marrow cells from WAS protein (WASP)–deficient mice also have a defect in chemotaxis. Serial transplantation and competitive reconstitution experiments demonstrated that marrow cells, including hematopoietic progenitors and stem cells (HSCs), have decreased homing capacities that were associated with a defect in adhesion to collagen. During development, HSCs migrate from the liver to the marrow and the spleen, prompting us to ask if a defect in HSC homing during development may explain the skewed X-chromosome inactivation in WAS carriers. Preliminary evidence has shown that, in contrast to marrow progenitor cells, fetal liver progenitor cells from heterozygous females had a random X-chromosome inactivation. When fetal liver cells from WASP-carrier females were injected into irradiated recipients, a nonrandom inactivation of the X-chromosome was found at the level of hematopoietic progenitors and HSCs responsible for the short- and long-term hematopoietic reconstitution. Therefore, the mechanism of the skewed X-chromosomal inactivation observed in WAS carriers may be related to a migration defect of WASP-deficient HSCs.

Keywords

Male, Mice, Knockout, Heterozygote, Chemotaxis, Proteins, Bone Marrow Cells, Hematopoietic Stem Cells, Actins, Chemokine CXCL12, Wiskott-Aldrich Syndrome, Mice, Dosage Compensation, Genetic, Cell Adhesion, Animals, Female, Collagen, Fluorouracil, Chemokines, CXC, Cytoskeleton, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?