
Reproductive cessation is perhaps the earliest aging phenotype that humans experience. Similarly, reproduction of Caenorhabditis elegans ceases in mid-adulthood. Although somatic aging has been studied in both worms and humans, mechanisms regulating reproductive aging are not yet understood. Here, we show that TGF-β Sma/Mab and Insulin/IGF-1 signaling regulate C. elegans reproductive aging by modulating multiple aspects of the reproductive process, including embryo integrity, oocyte fertilizability, chromosome segregation fidelity, DNA damage resistance, and oocyte and germline morphology. TGF-β activity regulates reproductive span and germline/oocyte quality noncell-autonomously and is temporally and transcriptionally separable from its regulation of growth. Chromosome segregation, cell cycle, and DNA damage response genes are upregulated in TGF-β mutant oocytes, decline in aged mammalian oocytes, and are critical for oocyte quality maintenance. Our data suggest that C. elegans and humans share many aspects of reproductive aging, including the correlation between reproductive aging and declining oocyte quality and mechanisms determining oocyte quality.
Aging, Biochemistry, Genetics and Molecular Biology(all), Reproduction, Apoptosis, Transforming Growth Factor beta, Oocytes, Animals, Humans, Insulin, Caenorhabditis elegans, Signal Transduction
Aging, Biochemistry, Genetics and Molecular Biology(all), Reproduction, Apoptosis, Transforming Growth Factor beta, Oocytes, Animals, Humans, Insulin, Caenorhabditis elegans, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 257 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
