Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.22489/cinc....
Article . 2018 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
UPF Digital Repository
Conference object . 2018
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Personalized Computational Framework to Study Arrhythmia Mechanisms on Top of ECG Image-Detected Substrate

Authors: Matthijs J. M. Cluitmans; Èric Lluch; Hernán G. Morales; Jordi Heijman; Paul G. A. Volders;

Personalized Computational Framework to Study Arrhythmia Mechanisms on Top of ECG Image-Detected Substrate

Abstract

Electrocardiographic Imaging (ECGI) can unmask electrical abnormalities that were difficult to detect using the standard 12-lead ECG. However, it is still challenging to interpret the potential arrhythmogenic consequence of electrical patterns found with ECGI. Here, we introduce a computational framework that allows personalized simulations of cardiac electrophysiology (EP) to mimic electrical substrate as detected in an individual, to study the interaction between that substrate and premature ventricular complexes (PVCs). In patient data, electrical substrate identified using ECGI shows regions of pronounced dispersion of local recovery (i.e., recovery gradients). A computational model of ventricular EP was developed and then used to mimic the recovery gradients and PVCs found in patients. We studied a variety of gradients (6-98 ms/cm) and coupling intervals of the extra stimulus (-70 to +260 ms relative to the end of local recovery), which showed that re-entry can only occur when dispersion of recovery is large (≥76 ms/cm), and the extra stimulus occurs just after local recovery ended (~+40 ms). In conclusion, this computational framework allows to identify the specific conditions under which ECGI-detected substrates and PVCs can lead to re-entry in a personalized approach.

This work is supported by the European Union Horizon 2020 Programme for Research and Innovation, under grant agreement No. 642676 (CardioFunXion).

Comunicació presentada a: Computing in Cardiology Conference (CinC) celebrat del 23 al 26 de setembre de 2018 a Maastricht, Països Baixos.

Countries
Spain, Netherlands
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
bronze