
handle: 10230/43969
Electrocardiographic Imaging (ECGI) can unmask electrical abnormalities that were difficult to detect using the standard 12-lead ECG. However, it is still challenging to interpret the potential arrhythmogenic consequence of electrical patterns found with ECGI. Here, we introduce a computational framework that allows personalized simulations of cardiac electrophysiology (EP) to mimic electrical substrate as detected in an individual, to study the interaction between that substrate and premature ventricular complexes (PVCs). In patient data, electrical substrate identified using ECGI shows regions of pronounced dispersion of local recovery (i.e., recovery gradients). A computational model of ventricular EP was developed and then used to mimic the recovery gradients and PVCs found in patients. We studied a variety of gradients (6-98 ms/cm) and coupling intervals of the extra stimulus (-70 to +260 ms relative to the end of local recovery), which showed that re-entry can only occur when dispersion of recovery is large (≥76 ms/cm), and the extra stimulus occurs just after local recovery ended (~+40 ms). In conclusion, this computational framework allows to identify the specific conditions under which ECGI-detected substrates and PVCs can lead to re-entry in a personalized approach.
This work is supported by the European Union Horizon 2020 Programme for Research and Innovation, under grant agreement No. 642676 (CardioFunXion).
Comunicació presentada a: Computing in Cardiology Conference (CinC) celebrat del 23 al 26 de setembre de 2018 a Maastricht, Països Baixos.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
