Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Heuristic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Heuristics
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Parallelism in divide-and-conquer non-dominated sorting: a theoretical study considering the PRAM-CREW model

Authors: Sumit Mishra; Sumit Mishra; Carlos A. Coello Coello;

Parallelism in divide-and-conquer non-dominated sorting: a theoretical study considering the PRAM-CREW model

Abstract

Non-dominated sorting is a crucial component of Pareto-based multi- and many-objective evolutionary algorithms. As the number of objectives increases, the execution time of a multi-objective evolutionary algorithm increases, too. Since multi-objective evolutionary algorithms normally have a low data dependency, research-ers have increasingly adopted parallel programming techniques to reduce their execution time. Evidently, it is also desirable to parallelize non-dominated sorting. There are some recent proposals which focus on the parallelization of non-dominated sorting, with a particular emphasis on a very well-known approach called fast non-dominated sorting. In this paper, however, we explore the scope of parallelism in an approach called divide-and-conquer based non-dominated sorting (DCNS), which we recently introduced. This paper explores the parallelism from a theoretical point of view. The parallelization of the DCNS approach has been explored considering the PRAM-CREW (Parallel Random Access Machine, Concurrent Read Exclusive Write) model. The analysis of parallel algorithms is usually carried out under the assumption that an unbounded number of processors are available. So, in our analysis, we have also considered the same assumption. The time and space complexities of the parallel version of the DCNS approach is obtained in different scenarios. The time complexity of the parallel version of the DCNS approach in different scenarios is proved to be $$\mathcal {O}(\log M + N)$$ . We have also obtained the maximum number of processors which can be required by the parallel version of the DCNS approach. The comparison of the parallel version of the DCNS approach with respect to some other approaches is also performed.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?