
Proteins play diverse and critical roles in cellular ribonucleoproteins (RNPs) including promoting formation of and stabilizing active RNA conformations. Yet, the conformational changes required to convert large RNAs into an active RNPs have proven difficult to characterize fully. Here we use high-resolution approaches to monitor both local nucleotide flexibility and solvent accessibility for nearly all nucleotides in the bI3 group I intron RNP in four assembly states: the free RNA, maturase-bound RNA, Mrs1-bound RNA, and the complete six-component holocomplex. The free RNA is misfolded relative to the secondary structure required for splicing. The maturase and Mrs1 proteins each stabilized long-range tertiary interactions but neither protein alone induced folding into the functional secondary structure. In contrast, simultaneous binding by both proteins results in large secondary structure rearrangements in the RNA and yielded the catalytically active group I intron structure. Secondary and tertiary folding of the RNA component of the bI3 RNP are thus not independent: RNA folding is strongly non-hierarchical. These results emphasize that protein-mediated stabilization of RNA tertiary interactions functions to pull the secondary structure into an energetically disfavored, but functional, conformation and emphasize a new role for facilitator proteins in RNP assembly.
Saccharomyces cerevisiae Proteins, RNA Stability, RNA-Binding Proteins, Saccharomyces cerevisiae, Nucleotidyltransferases, Mitochondrial Proteins, Ribonucleoproteins, Endoribonucleases, Nucleic Acid Conformation, RNA, Protein Binding
Saccharomyces cerevisiae Proteins, RNA Stability, RNA-Binding Proteins, Saccharomyces cerevisiae, Nucleotidyltransferases, Mitochondrial Proteins, Ribonucleoproteins, Endoribonucleases, Nucleic Acid Conformation, RNA, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
