
The integration of cloud resources with federated data retrieval has the potential of improving the maintenance, accessibility and performance of specialized databases in the biomedical field. However, such an integrative approach requires technical expertise in cloud computing, usage of a data retrieval engine and development of a unified data-model, which can encapsulate the heterogeneity of biological data. Here, a framework for the development of cloud-based biological specialized databases is proposed. It is powered by a distributed biodata retrieval system, able to interface with different data formats, as well as provides an integrated way for data exploration. The proposed framework was implemented using Java as the development environment, and MongoDB as the database manager. Syntactic analysis was based on BSON, jsoup, Apache Commons and w3c.dom open libraries. Framework is available in: http://nbel-lab.com and is distributed under the creative common agreement.
QA299.6-433, Computer applications to medicine. Medical informatics, R858-859.7, Federated databases, Software Article, MongoDB, Specialized databases, Cloud-based databases, Analysis
QA299.6-433, Computer applications to medicine. Medical informatics, R858-859.7, Federated databases, Software Article, MongoDB, Specialized databases, Cloud-based databases, Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
