Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Exper...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2016
Data sources: PubMed Central
The Journal of Experimental Medicine
Article . 2016 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arid5a regulates naive CD4+ T cell fate through selective stabilization of Stat3 mRNA

Authors: Barry Ripley; Tsukasa Mashima; Toru Okamoto; Kishan K. Nyati; Kazuo Yamashita; Praveen K Dubey; Mohammad Mahabub-Uz Zaman; +8 Authors

Arid5a regulates naive CD4+ T cell fate through selective stabilization of Stat3 mRNA

Abstract

Balance in signal transducer and activator of transcription (STAT) activation is a key factor in regulating the fate of naive CD4+ T cells. Here, we demonstrate that AT-rich interactive domain-containing protein 5a (Arid5a) in T cells directs naive CD4+ T cells to differentiate into inflammatory CD4+ T cells, especially Th17 cells, through selective stabilization of Stat3 (but not Stat1 and Stat5) mRNA in an IL-6–dependent manner. Loss of Arid5a in T cells led to reduction of STAT3 level under Th17-polarizing conditions, whereas STAT1 and STAT5 in Arid5a-deficient T cells were highly activated compared with those of WT T cells under the same conditions. These cells displayed the feature of antiinflammatory (Il10-expressing) CD4+ T cells. Thus, we show a T cell–intrinsic role of Arid5a on fate decisions of naive CD4+ T cells through selective stabilization of Stat3 mRNA.

Related Organizations
Keywords

Mice, Knockout, STAT3 Transcription Factor, Interleukin-6, RNA Stability, Interleukin-10, DNA-Binding Proteins, Mice, STAT1 Transcription Factor, STAT5 Transcription Factor, Animals, Th17 Cells, RNA, Messenger, Research Articles, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 1%
Top 10%
Top 10%
Green
bronze