Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Partial Differential Equations

Authors: Harold Cohen;

Partial Differential Equations

Abstract

Many of the partial differential equations that describe physical systems involve derivatives with respect to space variables (x,y,z) or with respect to space and time variables (x,y,z,t). Such equations include the diffusion equation which describes the spread (diffusion) of energy throughout a material medium with diffusion factor K $$ \frac{{\partial \psi (x,y,z,t)}}{{\partial t}} - {\rm K}{\nabla^2}\psi (x,y,z,t) = f(x,y,z,t) $$ (8.1a) the wave equation which describes the propagation of a wave traveling at speed c $$ \frac{{{\partial^{ 2}}\psi (x,y,z,t)}}{{\partial {t^2}}} - {c^2}{\nabla^2}\psi (x,y,z,t) = f(x,y,z,t) $$ (8.1b) and Poisson’s equation which describes the electrostatic potential at any point in space due to a distribution of charge, the properties of which are embodied in ρ(x,y,z), the charge density (charge per unit volume). $$ {\nabla^2}\psi (x,y,z) = \frac{{\rho (x,y,z)}}{{{\varepsilon_0}}} $$ (8.1c)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!