Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Reliability
Article . 2002 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Error detection by duplicated instructions in super-scalar processors

Authors: N. Oh; P.P. Shirvani; E.J. McCluskey;

Error detection by duplicated instructions in super-scalar processors

Abstract

This paper proposes a pure software technique "error detection by duplicated instructions" (EDDI), for detecting errors during usual system operation. Compared to other error-detection techniques that use hardware redundancy, EDDI does not require any hardware modifications to add error detection capability to the original system. EDDI duplicates instructions during compilation and uses different registers and variables for the new instructions. Especially for the fault in the code segment of memory, formulas are derived to estimate the error-detection coverage of EDDI using probabilistic methods. These formulas use statistics of the program, which are collected during compilation. EDDI was applied to eight benchmark programs and the error-detection coverage was estimated. Then, the estimates were verified by simulation, in which a fault injector forced a bit-flip in the code segment of executable machine codes. The simulation results validated the estimated fault coverage and show that approximately 1.5% of injected faults produced incorrect results in eight benchmark programs with EDDI, while on average, 20% of injected faults produced undetected incorrect results in the programs without EDDI. Based on the theoretical estimates and actual fault-injection experiments, EDDI can provide over 98% fault-coverage without any extra hardware for error detection. This pure software technique is especially useful when designers cannot change the hardware, but they need dependability in the computer system. To reduce the performance overhead, EDDI schedules the instructions that are added for detecting errors such that "instruction-level parallelism" (ILP) is maximized. Performance overhead can be reduced by increasing ILP within a single super-scalar processor. The execution time overhead in a 4-way super-scalar processor is less than the execution time overhead in the processors that can issue two instructions in one cycle.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    423
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
423
Top 1%
Top 0.1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!