Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Alternatively Spliced Isoform of PSD-93/Chapsyn 110 Binds to the Inwardly Rectifying Potassium Channel, Kir2.1

Authors: Leyland, M.L.; Dart, C.;

An Alternatively Spliced Isoform of PSD-93/Chapsyn 110 Binds to the Inwardly Rectifying Potassium Channel, Kir2.1

Abstract

Inwardly rectifying potassium (Kir) channels are prime determinants of resting membrane potential in neurons. Their subcellular distribution and surface density thus help shape neuronal excitability, yet mechanisms governing the membrane targeting and localization of Kir channels are poorly understood. Here we report a direct interaction between the strong inward rectifier, Kir2.1, and a recently identified splice variant of postsynaptic density-93 (PSD-93), a protein involved the subcellular targeting of ion channels and glutamate receptors at excitatory synapses. Yeast two-hybrid screening of a human brain cDNA library using the carboxyl terminus of Kir2.1 as bait yielded cDNA encoding the first two PDZ domains of PSD-93, but with an extended N-terminal region that diverged from other PSD-93 isoforms. This clone represented the human homologue of the mouse PSD-93 splice variant, PSD-93delta. Reverse transcription-polymerase chain reaction analysis showed diffuse low level PSD-93delta expression throughout the brain, with significantly higher levels in spinal cord. In vitro binding studies revealed that a type I PDZ recognition motif at the extreme C terminus of the Kir2.1 mediates interaction with all three PDZ domains of PSD-93delta, and association between Kir2 channels and PSD-93delta was confirmed further by the ability of anti-Kir2.1 antibodies to coimmunoprecipitate PSD-93delta from rat spinal cord lysates. Functionally, coexpression of Kir2.1 and PSD-93delta had no discernible effect upon channel kinetics but resulted in cell surface Kir2.1 clustering and suppression of channel internalization. We conclude that PSD-93delta is potentially an important regulator of the spatial and temporal distribution of Kir2 channels within neuronal membranes of the central nervous system.

Country
United Kingdom
Related Organizations
Keywords

Binding Sites, Base Sequence, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Brain, Genetic Variation, Membrane Proteins, Nerve Tissue Proteins, Rats, Alternative Splicing, Mice, Animals, Humans, Protein Isoforms, Amino Acid Sequence, Potassium Channels, Inwardly Rectifying, Guanylate Kinases, Sequence Alignment, DNA Primers, Gene Library

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
gold