Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Real-Time Systemsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Real-Time Systems
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

LRE-TL: an optimal multiprocessor algorithm for sporadic task sets with unconstrained deadlines

Authors: Shelby Funk;

LRE-TL: an optimal multiprocessor algorithm for sporadic task sets with unconstrained deadlines

Abstract

This article presents a detailed discussion of LRE-TL (Local Remaining Execution-TL-plane), an algorithm that schedules hard real-time periodic and sporadic task sets with unconstrained deadlines on identical multiprocessors. The algorithm builds upon important concepts such as the TL-plane construct used in the development of the LLREF algorithm (Largest Local Remaining Execution First). This article identifies the fundamental TL-plane scheduling principles used in the construction of LLREF . These simple principles are examined, identifying methods of simplifying the algorithm and allowing it to handle a more general task model. For example, we identify the principle that total local utilization can never increase within any TL-plane as long as a minimal number of tasks are executing. This observation leads to a straightforward approach for scheduling task arrivals within a TL-plane. In this manner LRE-TL can schedule sporadic tasks and tasks with unconstrained deadlines. Like LLREF, the LRE-TL scheduling algorithm is optimal for task sets with implicit deadlines. In addition, LRE-TL can schedule task sets with unconstrained deadlines provided they satisfy the density test for multiprocessor systems. While LLREF has a O(n 2) runtime per TL-plane, LRE-TL's runtime is O(nlog?n) per TL-plane.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!