
Abstract An accurate method of solution is developed for the Warner and McIntyre parameterization of nonorographic gravity wave drag for the case of hydrostatic dynamics in the absence of rotation. The new scheme is sufficiently fast that it is suitable for operational use in a general circulation model. Multiyear climate runs of the Canadian Middle Atmosphere Model are performed using the new scheme, and these are compared against equivalent climate runs using the full Warner and McIntyre scheme, which includes nonhydrostatic and rotational wave dynamics. The results indicate that the new operational scheme closely reproduces the seasonal distribution of time- and zonal-mean zonal winds, and the seasonal evolution of lower stratospheric temperatures that are obtained when the full Warner and McIntyre scheme is used. In addition, these quantities are shown to compare favorably with observations.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 93 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
