Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Communications in Ma...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Communications in Mathematical Physics
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2001
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
MPG.PuRe
Article . 2003
Data sources: MPG.PuRe
versions View all 5 versions
addClaim

Flows on Quaternionic-K�hler and Very Special Real Manifolds

Flows on quaternionic-Kähler and very special real manifolds
Authors: Devchand, C.; Alekseevsky, D.; Cortés, V.; Van Proeyen, A.;

Flows on Quaternionic-K�hler and Very Special Real Manifolds

Abstract

BPS solutions of 5-dimensional supergravity correspond to certain gradient flows on the product M x N of a quaternionic-Kaehler manifold M of negative scalar curvature and a very special real manifold N of dimension n >=0. Such gradient flows are generated by the `energy function' f = P^2, where P is a (bundle-valued) moment map associated to n+1 Killing vector fields on M. We calculate the Hessian of f at critical points and derive some properties of its spectrum for general quaternionic-Kaehler manifolds. For the homogeneous quaternionic-Kaehler manifolds we prove more specific results depending on the structure of the isotropy group. For example, we show that there always exists a Killing vector field vanishing at a point p in M such that the Hessian of f at p has split signature. This generalizes results obtained recently for the complex hyperbolic plane (universal hypermultiplet) in the context of 5-dimensional supergravity. For symmetric quaternionic-Kaehler manifolds we show the existence of non-degenerate local extrema of f, for appropriate Killing vector fields. On the other hand, for the non-symmetric homogeneous quaternionic-Kaehler manifolds we find degenerate local minima.

22 pages

Keywords

High Energy Physics - Theory, Mathematics - Differential Geometry, FOS: Physical sciences, quaternionic-Kähler manifold, Supergravity, very special real manifold, Killing vector field, Hyper-Kähler and quaternionic Kähler geometry, ``special'' geometry, High Energy Physics - Theory (hep-th), Differential Geometry (math.DG), Supersymmetric field theories in quantum mechanics, FOS: Mathematics, Applications of global differential geometry to the sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
Green
bronze