
We consider current-induced domain wall motion and, the reciprocal process, moving domain wall-induced current. The associated Onsager coefficients are expressed in terms of scattering matrices. Uncommonly, in (Ga,Mn)As, the effective Gilbert damping coefficient $��_w$ and the effective out-of-plane spin transfer torque parameter $��_w$ are dominated by spin-orbit interaction in combination with scattering off the domain wall, and not scattering off extrinsic impurities. Numerical calculations give $��_w \sim 0.01$ and $��_w \sim 1$ in dirty (Ga,Mn)As. The extraordinary large $��_w$ parameter allows experimental detection of current or voltage induced by domain wall motion in (Ga,Mn)As.
Final version accepted by Physical Review Letters
Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
