Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Molecular Pharmacology
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inhibition of Cyclic GMP-Binding Cyclic GMP-Specific Phosphodiesterase (Type 5) by Sildenafil and Related Compounds

Authors: Stephen A. Ballard; Illarion V. Turko; Sharron H. Francis; Jackie D. Corbin;

Inhibition of Cyclic GMP-Binding Cyclic GMP-Specific Phosphodiesterase (Type 5) by Sildenafil and Related Compounds

Abstract

The cGMP-binding cGMP-specific phosphodiesterase (PDE5) degrades cGMP and regulates the intracellular level of cGMP in many tissues, including the smooth muscle of the corpus cavernosum of the penis. Sildenafil (Viagra), a specific PDE5 inhibitor, promotes penile erection by blocking the activity of PDE5, which causes cGMP to accumulate in the corpus cavernosum. In the present study, sildenafil, like other PDE5 inhibitors, stimulates cGMP binding to the allosteric sites of PDE5 by interacting at the catalytic site of this enzyme, but the drug does not compete with cGMP for binding at the allosteric sites. Both sildenafil and zaprinast are competitive inhibitors of PDE5, and double-inhibition analysis shows that these two inhibitors added together interact with the catalytic site of PDE5 in a mutually exclusive manner. After site-directed mutagenesis of each of 23 conserved amino acid residues in the catalytic domain of PDE5, the pattern of changes in the IC50 values for sildenafil or UK-122764 is similar to that found for zaprinast. However, among the three inhibitors, sildenafil exhibits the most similar pattern of changes in the IC50 to that found for the affinity of cGMP, implying similar interactions with the catalytic domain. This may explain in part the stronger inhibitory potency of sildenafil for wild-type PDE5 compared with the other inhibitors [sildenafil (Ki = 1 nM) > UK-122764 (Ki = 5 nM) > zaprinast (Ki = 130 nM)]. The affinity of each of these inhibitors for PDE5 is much higher than that of cGMP itself (Km = 2000 nM). It is concluded that residues such as Tyr602, His607, His643, and Asp754 may form important interactions for sildenafil in PDE5, but because these amino acids are conserved in all mammalian PDEs, the selectivity and potency of sildenafil is likely to be provided by a nonconserved residue or residues in the PDE5 catalytic domain.

Related Organizations
Keywords

Cyclic Nucleotide Phosphodiesterases, Type 5, Binding Sites, Phosphodiesterase Inhibitors, Phosphoric Diester Hydrolases, Molecular Sequence Data, Gene Expression, Piperazines, Sildenafil Citrate, Inhibitory Concentration 50, Allosteric Regulation, Amino Acid Substitution, 3',5'-Cyclic-GMP Phosphodiesterases, Purines, Mutagenesis, Site-Directed, Animals, Cattle, Amino Acid Sequence, Sulfones, Cyclic GMP

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    182
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
182
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?