Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industrial Informatics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatio-Temporal 3-D Residual Networks for Simultaneous Detection and Depth Estimation of CFRP Subsurface Defects in Lock-In Thermography

Authors: Yafei Dong; Chenjie Xia; Jiangxin Yang; Yanlong Cao; Yanpeng Cao; Xin Li;

Spatio-Temporal 3-D Residual Networks for Simultaneous Detection and Depth Estimation of CFRP Subsurface Defects in Lock-In Thermography

Abstract

Non-destructive thermography is a high-speed, low-cost, and safe solution for subsurface defects detection of carbon fiber reinforced polymer (CFRP) materials, providing essential quality control in aerospace, automobile, and sports industries. In this paper, we build a reflective lock-in thermography system and construct a dataset that contains real-captured thermal image sequences of CFRP samples with various simulated internal defects under different excitation frequencies. Then, we present a novel 3D Convolutional Neural Network (CNN) model incorporating a combination of spatial and temporal convolutional filters and batch-size independent Group Normalization (GN) as a unified framework to process thermal image sequences captured by lock-in thermography for simultaneous subsurface defect detection and depth estimation. Finally, we define a multi-task loss function to perform end-to-end training of both defect detection and depth estimation tasks based on the real-captured infrared sequences. Comparative experiments are carried out on CFRP specimens with artificial defects of various sizes/shapes and at different depths. Qualitative and quantitative results illustrate that our 3D CNN model is capable of predicting accurate locations and depths of subsurface defects and performs favorably against the hand-crafted and CNN-based methods in lock-in thermography for individual defect detection and depth estimation tasks. The captured dataset and the source codes will be made publicly available.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!