Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1998 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Role for Saccharomyces cerevisiae Fatty Acid Activation Protein 4 in Regulating ProteinN-Myristoylation during Entry into Stationary Phase

Authors: K, Ashrafi; T A, Farazi; J I, Gordon;

A Role for Saccharomyces cerevisiae Fatty Acid Activation Protein 4 in Regulating ProteinN-Myristoylation during Entry into Stationary Phase

Abstract

Saccharomyces cerevisiae contains four known acyl-CoA synthetases (fatty acid activation proteins, Faaps). Faa1p and Faa4p activate exogenously derived fatty acids. Acyl-CoA metabolism plays a critical role in regulating protein N-myristoylation by the essential enzyme, myristoyl-CoA:protein N-myristoyltransferase (Nmt1p). In this report, we have examined whether Faa1p and Faa4p have distinct roles in affecting protein N-myristoylation as cells transition from growth in rich media to a growth-arrested state during nutrient deprivation (stationary phase). The colony-forming potential of 10 isogenic strains was defined as a function of time spent in stationary phase. These strains contained either a wild type or mutant NMT1 allele, and wild type or null alleles of each FAA. Only the combination of the Nmt mutant (nmt451Dp; reduced affinity for myristoyl-CoA) and loss of Faa4p produced a dramatic loss of colony-forming units (CFU). The progressive millionfold reduction in CFU was associated with a deficiency in protein N-myristoylation that first appeared during logarithmic growth, worsened through the post-diauxic phase, and became extreme in stationary phase. Northern and Western blot analyses plus N-myristoyltransferase assays showed that Nmt is normally present only during the log and diauxic/post-diauxic periods, indicating that N-myristoylproteins present in stationary phase are "inherited" from these earlier phases. Moreover, FAA4 is the only FAA induced during the critical diauxic/early post-diauxic transition. Although substitution of nmt1-451D for NMT1 results in deficiencies in protein N-myristoylation, these deficiencies are modest and limited by compensatory responses that include augmented expression of nmt1-451D and precocious induction of FAA4 in log phase. Loss of Faa4p from nmt1-451D cells severely compromises their capacity to adequately myristoylate Nmt substrates prior to entry into stationary phase since none of the other Faaps are able to functionally compensate for its absence. To identify Nmt1p substrates that may affect maintenance of proliferative potential during stationary phase, we searched the yeast genome for known and putative N-myristoylproteins. Of the 64 genes found, 48 were successfully deleted in NMT1 cells. Removal of any one of the following nine substrates produced a loss of CFU similar to that observed in nmt1-451Dfaa4Delta cells: Arf1p, Arf2p, Sip2p, Van1p, Ptc2p, YBL049W (homology to Snf7p), YJR114W, YKR007W, and YMR077C. These proteins provide opportunities to further define the molecular mechanisms that regulate survival during stationary phase.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Cell Survival, Stem Cells, Fatty Acids, Long-Chain-Fatty-Acid-CoA Ligase, Saccharomyces cerevisiae, Myristic Acid, Fungal Proteins, Repressor Proteins, Coenzyme A Ligases, Mutation, Acyl Coenzyme A, RNA, Messenger, Acyltransferases, Gene Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%
gold