Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della Ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Astrophysical Journal Letters
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
The Astrophysical Journal
Article . 2022 . Peer-reviewed
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discovery of a Binary-origin Classical Cepheid in a Binary System with a 59 day Orbital Period* †

Authors: Bogumił Pilecki; Ian B. Thompson; Felipe Espinoza-Arancibia; Richard I. Anderson; Wolfgang Gieren; Weronika Narloch; Javier Minniti; +4 Authors

Discovery of a Binary-origin Classical Cepheid in a Binary System with a 59 day Orbital Period* †

Abstract

Abstract We report the discovery of a surprising binary configuration of the double-mode Cepheid OGLE-LMC-CEP-1347 pulsating in the first (P 1 = 0.690 days) and second-overtone (P 2 = 0.556 days) modes. The orbital period (P orb = 59 days) of the system is five times shorter than the shortest known to date (310 days) for a binary Cepheid. The Cepheid itself is also the shortest-period one ever found in a binary system and the first double-mode Cepheid in a spectroscopically double-lined binary. OGLE-LMC-CEP-1347 is most probably on its first crossing through the instability strip, as inferred from both its short period and fast period increase, consistent with evolutionary models, and from the short orbital period (not expected for binary Cepheids whose components have passed through the red giant phase). Our evolutionary analysis yielded a first-crossing Cepheid with a mass in a range of 2.9–3.4 M ⊙ (lower than any measured Cepheid mass), consistent with observations. The companion is a stable star, at least two times fainter and less massive than the Cepheid (preliminary mass ratio q = 0.55), while also redder and thus at the subgiant or more advanced evolutionary stage. To match these characteristics, the Cepheid has to be a product of binary interaction, most likely a merger of two less massive stars, which makes it the second known classical Cepheid of binary origin. Moreover, further evolution of the components may lead to another binary interaction.

Keywords

Astrophysics - Solar and Stellar Astrophysics, FOS: Physical sciences, Settore FIS/05 - ASTRONOMIA E ASTROFISICA, Solar and Stellar Astrophysics (astro-ph.SR)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold