Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tight Bounds for Connectivity of Random K-out Graphs

Authors: Sood, Mansi; Yagan, Osman;

Tight Bounds for Connectivity of Random K-out Graphs

Abstract

Random K-out graphs are used in several applications including modeling by sensor networks secured by the random pairwise key predistribution scheme, and payment channel networks. The random K-out graph with $n$ nodes is constructed as follows. Each node draws an edge towards $K$ distinct nodes selected uniformly at random. The orientation of the edges is then ignored, yielding an undirected graph. An interesting property of random K-out graphs is that they are connected almost surely in the limit of large $n$ for any $K \geq2$. This means that they attain the property of being connected very easily, i.e., with far fewer edges ($O(n)$) as compared to classical random graph models including Erdős-Rényi graphs ($O(n \log n)$). This work aims to reveal to what extent the asymptotic behavior of random K-out graphs being connected easily extends to cases where the number $n$ of nodes is small. We establish upper and lower bounds on the probability of connectivity when $n$ is finite. Our lower bounds improve significantly upon the existing results, and indicate that random K-out graphs can attain a given probability of connectivity at much smaller network sizes than previously known. We also show that the established upper and lower bounds match order-wise; i.e., further improvement on the order of $n$ in the lower bound is not possible. In particular, we prove that the probability of connectivity is $1-Θ({1}/{n^{K^2-1}})$ for all $K \geq 2$. Through numerical simulations, we show that our bounds closely mirror the empirically observed probability of connectivity.

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), Probability (math.PR), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Mathematics - Probability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green