Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Clini...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Clinical Investigation
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lack of Protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis

Authors: Tal Burstyn-Cohen; Greg Lemke; Mary J. Heeb;

Lack of Protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis

Abstract

Protein S (ProS) is a blood anticoagulant encoded by the Pros1 gene, and ProS deficiencies are associated with venous thrombosis, stroke, and autoimmunity. These associations notwithstanding, the relative risk that reduced ProS expression confers in different disease settings has been difficult to assess without an animal model. We have now described a mouse model of ProS deficiency and shown that all Pros1-/- mice die in utero,from a fulminant coagulopathy and associated hemorrhages. Although ProS is known to act as a cofactor for activated Protein C (aPC), plasma from Pros1+/- heterozygous mice exhibited accelerated thrombin generation independent of aPC, and Pros1 mutants displayed defects in vessel development and function not seen in mice lacking protein C. Similar vascular defects appeared in mice in which Pros1 was conditionally deleted in vascular smooth muscle cells. Mutants in which Pros1 was deleted specifically in hepatocytes, which are thought to be the major source of ProS in the blood, were viable as adults and displayed less-severe coagulopathy without vascular dysgenesis. Finally, analysis of mutants in which Pros1 was deleted in endothelial cells indicated that these cells make a substantial contribution to circulating ProS. These results demonstrate that ProS is a pleiotropic anticoagulant with aPC-independent activities and highlight new roles for ProS in vascular development and homeostasis.

Related Organizations
Keywords

Mice, Knockout, Heterozygote, Protein S Deficiency, Thrombin, Brain, Endothelial Cells, Hemorrhage, Blood Coagulation Disorders, Protein S, Mice, Spinal Cord, Blood Circulation, Gene Targeting, Embryo Loss, Hepatocytes, Animals, Blood Vessels, Homeostasis, Blood Coagulation, Protein C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    144
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
144
Top 1%
Top 10%
Top 10%
gold