<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rare mutations in the gene HNF4A, encoding the transcription factor hepatocyte nuclear factor 4α (HNF-4A), account for ~5% of cases of MODY and more frequent variants in this gene may be involved in multifactorial forms of diabetes. Two low-frequency, non-synonymous variants in HNF4A (V255M, minor allele frequency [MAF] ~0.1%; T130I, MAF ~3.0%)-known to influence downstream HNF-4A target gene expression-are of interest, but previous type 2 diabetes association reports were inconclusive. We aimed to evaluate the contribution of these variants to type 2 diabetes susceptibility through large-scale association analysis.We genotyped both variants in at least 5,745 cases and 14,756 population controls from the UK and Denmark. We also undertook an expanded association analysis that included previously reported and novel genotype data obtained in Danish, Finnish, Canadian and Swedish samples. A meta-analysis incorporating all published association studies of the T130I variant was subsequently carried out in a maximum sample size of 14,279 cases and 26,835 controls.We found no association between V255M and type 2 diabetes in either the initial (p = 0.28) or the expanded analysis (p = 0.44). However, T130I demonstrated a modest association with type 2 diabetes in the UK and Danish samples (additive per allele OR 1.17 [95% CI 1.08-1.28]; p = 1.5 × 10⁻⁴), which was strengthened in the meta-analysis (OR 1.20 [95% CI 1.10-1.30]; p = 2.1 × 10⁻⁵).Our data are consistent with T130I as a low-frequency variant influencing type 2 diabetes risk, but are not conclusive when judged against stringent standards for genome-wide significance. This study exemplifies the difficulties encountered in association testing of low-frequency variants.
UK POPULATION, Adult, Male, CHROMOSOME 20Q, T130I, Genotype, Low-frequency variants, LOCI, 610, FACTOR-4-ALPHA GENE, T130I MUTATION, Diabetes Mellitus, Humans, Genetic Predisposition to Disease, GENOME-WIDE ASSOCIATION, Aged, RISK, COMMON VARIANTS, Type 2 diabetes, V255M, Middle Aged, NUCLEAR FACTOR 4-ALPHA, HNF4A, Diabetes Mellitus, Type 2, Hepatocyte Nuclear Factor 4, REPLICATION, Mutation, Female, Type 2
UK POPULATION, Adult, Male, CHROMOSOME 20Q, T130I, Genotype, Low-frequency variants, LOCI, 610, FACTOR-4-ALPHA GENE, T130I MUTATION, Diabetes Mellitus, Humans, Genetic Predisposition to Disease, GENOME-WIDE ASSOCIATION, Aged, RISK, COMMON VARIANTS, Type 2 diabetes, V255M, Middle Aged, NUCLEAR FACTOR 4-ALPHA, HNF4A, Diabetes Mellitus, Type 2, Hepatocyte Nuclear Factor 4, REPLICATION, Mutation, Female, Type 2
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |