Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2005
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cell Divisions in the Drosophila Embryonic Mesoderm Are Repressed via Posttranscriptional Regulation of string/cdc25 by HOW

Authors: Nabel-Rosen, Helit; Toledano-Katchalski, Hila; Volohonsky, Gloria; Volk, Talila;

Cell Divisions in the Drosophila Embryonic Mesoderm Are Repressed via Posttranscriptional Regulation of string/cdc25 by HOW

Abstract

Cell-cycle progression is tightly regulated during embryonic development. In the Drosophila early embryo, the levels of String/Cdc25 define the precise timing and sites of cell divisions. However, cell-cycle progression is arrested in the mesoderm of gastrulating embryos despite a positive transcriptional string/cdc25 activation provided by the mesoderm-specific action of Twist. Whereas String/Cdc25 is negatively regulated by Tribbles in the mesoderm at these embryonic stages, the factor(s) controlling string/cdc25 mRNA levels has yet to be elucidated.Here, we show that the repressor isoform of the Drosophila RNA binding protein Held Out Wing [HOW(L)] is required to inhibit mesodermal cell division during gastrulation. Embryos mutant for how exhibited an excess of cell divisions, leading to delayed mesoderm invagination. The levels of the mitotic activator string/cdc25 mRNA in these embryos were significantly elevated. Protein-RNA precipitation experiments show that HOW(L) binds string/cdc25 mRNA. Overexpression of HOW(L) in Schneider cells reduces specifically the steady-state mRNA levels of a gfp reporter fused to string/cdc25 untranslated region (3'UTR).Our results suggest that in wild-type embryos, string/cdc25 mRNA levels are downregulated by the repressor isoform HOW(L), which binds directly to string/cdc25 mRNA and regulates its degradation. Thus, we are proposing a novel posttranscriptional mechanism controlling cell-cycle progression in the Drosophila embryo.

Related Organizations
Keywords

Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Nuclear Proteins, RNA-Binding Proteins, Cell Cycle Proteins, Gastrula, Immunohistochemistry, Mesoderm, Animals, Drosophila Proteins, Drosophila, RNA Interference, Protein Tyrosine Phosphatases, Cell Division, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Average
Top 10%
hybrid