
Automated medical image segmentation is a priority research area for computational methods. In particular, detection of cancerous tumors represents a current challenge in this area with potential for real-world impact. This paper describes a method developed in response to the 2019 Kidney Tumor Segmentation Challenge (KiTS19). Axial computed tomography (CT) scans from 210 kidney cancer patients were used to develop and evaluate this automatic segmentation method based on a logical ensemble of fully-convolutional network (FCN) architectures, followed by volumetric validation. Data was pre-processed using conventional computer vision techniques, thresholding, histogram equalization, morphological operations, centering, zooming and resizing. Three binary FCN segmentation models were trained to classify kidney and tumor (2), and only tumor (1), respectively. Model output images were stacked and volumetrically validated to produce the final segmentation for each patient scan. The average F1 score from kidney and tumor pixel classifications was calculated as 0.6758 using preprocessed images and annotations; although restoring to the original image format reduced this score. It remains to be seen how this compares to other solutions.
9 pages, 4 figures, 1 table, competition submission manuscript
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, 006, Electrical Engineering and Systems Science - Image and Video Processing
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, 006, Electrical Engineering and Systems Science - Image and Video Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
