
The PKD1 or PKD2 genes encode polycystins (PC) 1 and 2, which are associated with polycystic kidney disease. Previously we demonstrated that PC2 interacts with the inositol 1,4,5-trisphosphate receptor (IP(3)R) to modulate Ca(2+) signaling. Here, we investigate whether PC1 also regulates IP(3)R. We generated a fragment encoding the last six transmembrane (TM) domains of PC1 and the C-terminal tail (QIF38), a section with the highest homology to PC2. Using a Xenopus oocyte Ca(2+) imaging system, we observed that expression of QIF38 significantly reduced the initial amplitude of IP(3)-induced Ca(2+) transients, whereas a mutation lacking the C-terminal tail did not. Thus, the C terminus is essential to QIF38 function. Co-immunoprecipitation assays demonstrated that through its C terminus, QIF38 associates with the IP(3)-binding domain of IP(3)R. A shorter PC1 fragment spanning only the last TM and the C-terminal tail also reduced IP(3)-induced Ca(2+) release, whereas another C-terminal fragment lacking any TM domain did not. Thus, only endoplasmic reticulum-localized PC1 can modulate IP(3)R. Finally, we show that in the polarized Madin-Darby canine kidney cells, heterologous expression of full-length PC1 resulted in a smaller IP(3)-induced Ca(2+) response. Overexpression of the IP(3)-binding domain of IP(3)R reversed the inhibitory effect of PC1, suggesting interaction of full-length PC1 (or its cleavage forms) with endogenous IP(3)R in Madin-Darby canine kidney cells. These results indicate that the behavior of full-length PC1 in mammalian cells is congruent with that of PC1 C-terminal fragments in the oocyte system. These data demonstrate that PC1 inhibits Ca(2+) release, perhaps opposing the effect of PC2, which facilitates Ca(2+) release through the IP(3)R.
Polycystic Kidney Diseases, TRPP Cation Channels, Cell Polarity, Cell Line, Protein Structure, Tertiary, Xenopus laevis, Dogs, Animals, Humans, Inositol 1,4,5-Trisphosphate Receptors, Calcium Signaling
Polycystic Kidney Diseases, TRPP Cation Channels, Cell Polarity, Cell Line, Protein Structure, Tertiary, Xenopus laevis, Dogs, Animals, Humans, Inositol 1,4,5-Trisphosphate Receptors, Calcium Signaling
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
