Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal Of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Journal Of Pathology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal Of Pathology
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acquired Loss of Renal Nuclease Activity Is Restricted to DNaseI and Is an Organ-Selective Feature in Murine Lupus Nephritis

Authors: Ole Petter Rekvig; Natalya Seredkina;

Acquired Loss of Renal Nuclease Activity Is Restricted to DNaseI and Is an Organ-Selective Feature in Murine Lupus Nephritis

Abstract

An acquired loss of renal DNaseI promotes transformation of mild mesangial lupus nephritis into membranoproliferative end-stage organ disease. In this study, we analyzed expression profiles of DNaseI in other organs of lupus-prone (NZB×NZW)F1 mice during disease progression to determine whether silencing of the renal DNaseI gene is an organ-specific feature or whether loss of DNaseI reflects a systemic error in mice with sever lupus nephritis. The present results demonstrate normal or elevated levels of DNaseI mRNA and enzyme activity in liver, spleen, and serum samples from (NZB×NZW)F1 mice throughout all the stages of lupus nephritis. DNaseI activity was dramatically reduced only in kidneys of mice with sever nephritis and was the only nuclease that was down-regulated, whereas six other nucleases (DNaseII1 to 3, caspase-activated DNase, Dnase2a, and endonuclease G) were approximately normally expressed in kidneys, liver, and spleen. Loss of renal DNaseI was not accompanied by changes in serum DNaseI activity, suggesting independent mechanisms of DNaseI regulation in circulation and in kidneys and an absence of compensatory up-regulation of serum DNaseI activity in the case of renal DNaseI deficiency. Thus, silencing of renal DNaseI is a unique renal feature in membranoproliferative lupus nephritis. Determining the mechanism(s) responsible for DNaseI down-regulation might lead to the generation of new therapeutic targets to treat and prevent progressive lupus nephritis.

Related Organizations
Keywords

Mice, Inbred BALB C, Down-Regulation, Gene Expression, Kidney, Lupus Nephritis, Mice, Liver, Animals, Deoxyribonuclease I, Female, Gene Silencing, RNA, Messenger, Spleen

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
hybrid