Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Bath's...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytica Chimica Acta
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A hydrogel-based optical fibre fluorescent pH sensor for observing lung tumor tissue acidity

Authors: Jingjing Gong; Michael G. Tanner; Seshasailam Venkateswaran; James M. Stone; Yichuan Zhang; Mark Bradley;

A hydrogel-based optical fibre fluorescent pH sensor for observing lung tumor tissue acidity

Abstract

Technologies for measuring physiological parameters in vivo offer the possibility of the detection of disease and its progression due to the resulting changes in tissue pH, or temperature, etc.. Here, a compact hydrogel-based optical fibre pH sensor was fabricated, in which polymer microarrays were utilized for the high-throughput discovery of an optimal matrix for pH indicator immobilization. The fabricated hydrogel-based probe responded rapidly to pH changes and demonstrated a good linear correlation within the physiological pH range (from 5.5 to 8.0) with a precision of 0.10 pH units. This miniature probe was validated by measuring pH across a whole ovine lung and allowed discrimination of tumorous and normal tissue, thus offering the potential for the rapid and accurate observation of tissue pH changes.

Country
United Kingdom
Keywords

Polymer microarray, Lung Neoplasms, Sheep, /dk/atira/pure/subjectarea/asjc/1600/1602; name=Analytical Chemistry, Hydrogels, Hydrogen-Ion Concentration, /dk/atira/pure/subjectarea/asjc/2300/2304; name=Environmental Chemistry, Hydrogel-based pH sensor, /dk/atira/pure/subjectarea/asjc/1300/1303; name=Biochemistry, In situ photo-polymerization, Optical fibre, Animals, Lung tumor, /dk/atira/pure/subjectarea/asjc/1600/1607; name=Spectroscopy, Lung, Optical Fibers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 1%
Top 10%
Top 10%
Green