Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2013 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

E-cadherin Polarity Is Determined by a Multifunction Motif Mediating Lateral Membrane Retention through Ankyrin-G and Apical-lateral Transcytosis through Clathrin

Authors: Jenkins, Paul M; Vasavda, Chirag; Hostettler, Janell; Davis, Jonathan Q.; Abdi, Khadar; Bennett, Vann;

E-cadherin Polarity Is Determined by a Multifunction Motif Mediating Lateral Membrane Retention through Ankyrin-G and Apical-lateral Transcytosis through Clathrin

Abstract

We report a highly conserved motif in the E-cadherin juxtamembrane domain that determines apical-lateral polarity by conferring both restricted mobility at the lateral membrane and transcytosis of apically mis-sorted protein to the lateral membrane. Mutations causing either increased lateral membrane mobility or loss of apical-lateral transcytosis result in partial mis-sorting of E-cadherin in Madin-Darby canine kidney cells. However, loss of both activities results in complete loss of polarity. We present evidence that residues required for restricted mobility mediate retention at the lateral membrane through interaction with ankyrin-G, whereas dileucine residues conferring apical-lateral transcytosis act through a clathrin-dependent process and function in an editing pathway. Ankyrin-G interaction with E-cadherin is abolished by the same mutations resulting in increased E-cadherin mobility. Clathrin heavy chain knockdown and dileucine mutation of E-cadherin both cause the same partial loss of polarity of E-cadherin. Moreover, clathrin knockdown causes no further change in polarity of E-cadherin with dileucine mutation but does completely randomize E-cadherin mutants lacking ankyrin-binding. Dileucine mutation, but not loss of ankyrin binding, prevented transcytosis of apically mis-sorted E-cadherin to the lateral membrane. Finally, neurofascin, which binds ankyrin but lacks dileucine residues, exhibited partial apical-lateral polarity that was abolished by mutation of its ankyrin-binding site but was not affected by clathrin knockdown. The polarity motif thus integrates complementary activities of lateral membrane retention through ankyrin-G and apical-lateral transcytosis of mis-localized protein through clathrin. Together, the combination of retention and editing function to ensure a high fidelity steady state localization of E-cadherin at the lateral membrane.

Related Organizations
Keywords

Ankyrins, Mice, Knockout, Sequence Homology, Amino Acid, Amino Acid Motifs, Cell Membrane, Molecular Sequence Data, Cell Biology, Cadherins, Clathrin, Cell Line, Madin Darby Canine Kidney Cells, Mice, Inbred C57BL, Mice, Dogs, HEK293 Cells, Leucine, Mutation, Animals, Humans, Amino Acid Sequence, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
Green
gold