
AbstractNon-line-of-sight (NLOS) imaging is attractive for its potential applications in autonomous vehicles, robotic vision, and biomedical imaging. NLOS imaging can be realized through reconstruction or recognition. Recognition is preferred in some practical scenarios because it can classify hidden objects directly and quickly. Current NLOS recognition is mostly realized by exploiting active laser illumination. However, passive NLOS recognition, which is essential for its simplified hardware system and good stealthiness, has not been explored. Here, we use a passive imaging setting that consists of a standard digital camera and an occluder to achieve a NLOS recognition system by deep learning. The proposed passive NLOS recognition system demonstrates high accuracy with the datasets of handwritten digits, hand gestures, human postures, and fashion products (81.58 % to 98.26%) using less than 1 second per image in a dark room. Beyond, good performance can be maintained under more complex lighting conditions and practical tests. Moreover, we conversely conduct white-box attacks on the NLOS recognition algorithm to study its security. An attack success rate of approximately 36% is achieved at a relatively low cost, which demonstrates that the existing passive NLOS recognition remains somewhat vulnerable to small perturbations.
QB460-466, Physics, QC1-999, Astrophysics
QB460-466, Physics, QC1-999, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
