<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 9467943
The mouse homologues of the breast cancer susceptibility genes, Brca1 and Brca2, are expressed in a cell cycle-dependent fashion in vitro and appear to be regulated by similar or overlapping pathways. Therefore, we compared the non isotopic in situ hybridization expression patterns of Brca1 and Brca2 mRNA in vivo in mitotic and meiotic cells during mouse embryogenesis, mammary gland development, and in adult tissues including testes, ovaries, and hormonally altered ovaries. Brca1 and Brca2 are expressed concordantly in proliferating cells of embryos, and the mammary gland undergoing morphogenesis and in most adult tissues. The expression pattern of Brca1 and Brca2 correlates with the localization of proliferating cell nuclear antigen, an indicator of proliferative activity. In the ovary, Brca1 and Brca2 exhibited a comparable hormone-independent pattern of expression in oocytes, granulosa cells and thecal cells of developing follicles. In the testes, Brca1 and Brca2 were expressed in mitotic spermatogonia and early meiotic prophase spermatocytes. Northern analyses of prepubertal mouse testes revealed that the time course of Brca2 expression was delayed in spermatogonia relative to Brca1. Thus, while Brca1 and Brca2 share concordant cell-specific patterns of expression in most proliferating tissues, these observations suggest that they may have distinct roles during meiosis.
BRCA2 Protein, Male, Ovary, Genes, BRCA1, Gene Expression Regulation, Developmental, Mitosis, Neoplasm Proteins, Embryonic and Fetal Development, Meiosis, Mice, Mammary Glands, Animal, Pregnancy, Testis, Morphogenesis, Animals, Female, In Situ Hybridization, Transcription Factors
BRCA2 Protein, Male, Ovary, Genes, BRCA1, Gene Expression Regulation, Developmental, Mitosis, Neoplasm Proteins, Embryonic and Fetal Development, Meiosis, Mice, Mammary Glands, Animal, Pregnancy, Testis, Morphogenesis, Animals, Female, In Situ Hybridization, Transcription Factors
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 90 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |