Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1988 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An intrinsic membrane glycoprotein of the golgi apparatus with O-linked N-acetylglucosamine facing the cytosol.

Authors: Capasso, Juan M.; Abeijon, Claudia; Hirschberg, Carlos B.;

An intrinsic membrane glycoprotein of the golgi apparatus with O-linked N-acetylglucosamine facing the cytosol.

Abstract

We have recently described the occurrence of integral membrane glycoproteins in rat liver smooth and rough endoplasmic reticulum with O-N-acetylglucosamine facing the cytosolic and luminal sides of the membrane (Abeijon, C., and Hirschberg, C. B. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1010-1014). We now report that integral membrane glycoproteins with cytosolic facing O-N-acetylglucosamine also occur in membranes of rat liver Golgi apparatus. This was determined following incubation of vesicles from the Golgi apparatus, which were sealed and of the same membrane topographical orientation as in vivo, with UDP-[14C]galactose and saturating amounts of bovine milk galactosyltransferase. This enzyme does not enter the lumen of the vesicles and specifically catalyzes the addition of galactose, in a beta 1-4 linkage, to terminal N-acetylglucosamine. Under these conditions, galactose was transferred to a glycoprotein of molecular mass of 92 kDa. This protein was insoluble in sodium carbonate, pH 11.5, conditions under which integral membrane proteins remain membrane bound and was insensitive to treatment with peptide:N-glycosidase F. beta Elimination and chromatography showed that radiolabeled galactose was part of a disaccharide which was characterized as Gal beta 1-4GlcNAcitol. This glycoprotein is specific of the Golgi apparatus membrane. Intrinsic membrane glycoproteins with this unusual carbohydrate membrane orientation thus occur in the endoplasmic reticulum and Golgi apparatus of rat liver.

Keywords

Male, Glucosamine, Membrane Glycoproteins, Inbred Strains, Life Sciences, Golgi Apparatus, Oligosaccharides, Rats, Inbred Strains, Intracellular Membranes, Cell Fractionation, Endoplasmic Reticulum, Acetylglucosamine, Rats, Molecular Weight, Cytosol, Liver, Medicine and Health Sciences, Animals

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Top 10%
gold