Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nanomedicine Nanotec...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nanomedicine Nanotechnology Biology and Medicine
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The promotion of bone regeneration through CS/GP-CTH/antagomir-133a/b sustained release system

Authors: Fusong, Jiang; Fuli, Yin; Yiwei, Lin; Wenyang, Xia; Lihui, Zhou; Chenhao, Pan; Nan, Wang; +3 Authors

The promotion of bone regeneration through CS/GP-CTH/antagomir-133a/b sustained release system

Abstract

Few studies reported the application of miRNA in bone regeneration. In this study, the expression of miR133a and miR133b in murine BMSCs was inhibited via antagomiR-133a/b and the osteogenic differentiation in murine BMSCs was evaluated. The RT-PCR, flow cytometry, cell counting kit-8, and annexin V-FITC/PI double staining assays were performed. Double knockdown miR133a and miR133b can promote BMSC osteogenic differentiation. At optimum N/P ration (15:1), the loading efficiency can reach over 90%. CTH-antagomiR-133a/b showed no cytotoxicity to BMSCs and diminished miR133a and miR133b expression in BMSCs. Furthermore, chitosan-based sustained delivery system can facilitate continuous dosing of antagomiR-133a/b, which enhanced calcium deposition and osteogenic specific gene expression in vitro. The new bone formation was enhanced after the sustained delivery system containing CTH-antagomiR-133a/b nanoparticles was used in mouse calvarial bone defect model. Our results demonstrate that CTH nanoparticles could facilitate continuous dosing of antagomiR133a/b, which can promote osteogenic differentiation.

Related Organizations
Keywords

Bone Regeneration, Antagomirs, Bone Marrow Cells, Mice, MicroRNAs, Gene Expression Regulation, Osteogenesis, Delayed-Action Preparations, Gene Knockdown Techniques, Animals, Nanoparticles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!