
arXiv: 2111.02992
Given a directed graph, we show how to efficiently find a shortest (directed, simple) cycle on an even number of vertices. As far as we know, no polynomial-time algorithm was previously known for this problem. In fact, finding any even cycle in a directed graph in polynomial time was open for more than two decades until Robertson, Seymour, and Thomas (Ann. of Math. (2) 1999) and, independently, McCuaig (Electron. J. Combin. 2004; announced jointly at STOC 1997) gave an efficiently testable structural characterisation of even-cycle-free directed graphs. Methodologically, our algorithm relies on algebraic fingerprinting and randomized polynomial identity testing over a finite field, and uses a generating polynomial implicit in Vazirani and Yannakakis ( Discrete Appl. Math. 1989) that enumerates weighted cycle covers as a difference of a permanent and a determinant polynomial. The need to work with the permanent is where our main technical contribution occurs. We design a family of finite commutative rings of characteristic 4 that simultaneously (i) give a nondegenerate representation for the generating polynomial identity via the permanent and the determinant, (ii) support efficient permanent computations, and (iii) enable emulation of finite-field arithmetic in characteristic 2. Here our work is foreshadowed by that of Bj��rklund and Husfeldt (SIAM J. Comput. 2019), who used a considerably less efficient ring design to obtain a polynomial-time algorithm for the shortest two disjoint paths problem. Building on work of Gilbert and Tarjan (Numer. Math. 1978) as well as Alon and Yuster (J. ACM 2013), we also show how ideas from the nested dissection technique for solving linear equation systems leads to faster algorithm designs when we have control on the separator structure of the input graph; for example, this happens when the input has bounded genus.
ta113, FOS: Computer and information sciences, parity cycle cover, polynomial-time algorithm, directed graph, permanent, shortest two disjoint paths, Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Data Structures and Algorithms (cs.DS), shortest even cycle, Combinatorics (math.CO)
ta113, FOS: Computer and information sciences, parity cycle cover, polynomial-time algorithm, directed graph, permanent, shortest two disjoint paths, Computer Science - Data Structures and Algorithms, FOS: Mathematics, Mathematics - Combinatorics, Data Structures and Algorithms (cs.DS), shortest even cycle, Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
