Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MS-RNN: A Flexible Multi-Scale Framework for Spatiotemporal Predictive Learning

Authors: Ma, Zhifeng; Zhang, Hao; Liu, Jie;

MS-RNN: A Flexible Multi-Scale Framework for Spatiotemporal Predictive Learning

Abstract

Spatiotemporal predictive learning, which predicts future frames through historical prior knowledge with the aid of deep learning, is widely used in many fields. Previous work essentially improves the model performance by widening or deepening the network, but it also brings surging memory overhead, which seriously hinders the development and application of this technology. In order to improve the performance without increasing memory consumption, we focus on scale, which is another dimension to improve model performance but with low memory requirement. The effectiveness has been widely demonstrated in many CNN-based tasks such as image classification and semantic segmentation, but it has not been fully explored in recent RNN models. In this paper, learning from the benefit of multi-scale, we propose a general framework named Multi-Scale RNN (MS-RNN) to boost recent RNN models for spatiotemporal predictive learning. We verify the MS-RNN framework by thorough theoretical analyses and exhaustive experiments, where the theory focuses on memory reduction and performance improvement while the experiments employ eight RNN models (ConvLSTM, TrajGRU, PredRNN, PredRNN++, MIM, MotionRNN, PredRNN-V2, and PrecipLSTM) and four datasets (Moving MNIST, TaxiBJ, KTH, and Germany). The results show the efficiency that RNN models incorporating our framework have much lower memory cost but better performance than before. Our code is released at \url{https://github.com/mazhf/MS-RNN}.

Keywords

FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green