<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Angiogenesis, the process by which new blood vessels arise from preexisting ones, is critical for embryonic development and is an integral part of many disease processes. Recent studies have provided detailed information on how angiogenic sprouts initiate, elongate, and branch, but less is known about how these processes cease. Here, we show that S1PR1, a receptor for the blood-borne bioactive lipid sphingosine-1-phosphate (S1P), is critical for inhibition of angiogenesis and acquisition of vascular stability. Loss of S1PR1 leads to increased endothelial cell sprouting and the formation of ectopic vessel branches. Conversely, S1PR1 signaling inhibits angiogenic sprouting and enhances cell-to-cell adhesion. This correlates with inhibition of vascular endothelial growth factor-A (VEGF-A)-induced signaling and stabilization of vascular endothelial (VE)-cadherin localization at endothelial junctions. Our data suggest that S1PR1 signaling acts as a vascular-intrinsic stabilization mechanism, protecting developing blood vessels against aberrant angiogenic responses.
Mice, Knockout, Endothelial Cells, Neovascularization, Physiologic, Mice, Transgenic, Cadherins, Vascular Endothelial Growth Factor Receptor-2, Mice, Receptors, Lysosphingolipid, Antigens, CD, Animals, Humans, Sphingosine-1-Phosphate Receptors, Cells, Cultured, Zebrafish, Developmental Biology
Mice, Knockout, Endothelial Cells, Neovascularization, Physiologic, Mice, Transgenic, Cadherins, Vascular Endothelial Growth Factor Receptor-2, Mice, Receptors, Lysosphingolipid, Antigens, CD, Animals, Humans, Sphingosine-1-Phosphate Receptors, Cells, Cultured, Zebrafish, Developmental Biology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 292 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |