Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry - A European Journal
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

Stabilization of HHeF by Complexation: Is it a Really Viable Strategy?

Authors: Maria Giordani; ANTONIOTTI, Paola; Felice Grandinetti;

Stabilization of HHeF by Complexation: Is it a Really Viable Strategy?

Abstract

AbstractAb initio calculations at the MP2 and CCSD(T) levels of theory have disclosed the conceivable existence of fluorine‐coordinated complexes of HHeF with alkali‐metal ions and molecules M+ (M+=Li+–Cs+), M+–OH2, M+–NH3 (M+=Li+, Na+), and MX (M=Li, Na; X=F, Cl, Br). All these ligands L induce a shortening of the HHe distance and a lengthening of the HeF distance accompanied by consistent blue‐ and redshifts, respectively, of the HHe and HeF stretching modes. These structural effects are qualitatively similar to those predicted for other investigated complexes of the noble gas hydrides HNgY, but are quantitatively more pronounced. For example, the blueshifts of the HHe stretching mode are exceptionally large, ranging between around 750 and 1000 cm−1. The interactions of HHeF with the ligands investigated herein also enhance the (HHe)+F− dipole character and produce large complexation energies of around 20–60 kcal mol−1. Most of the HHeF–L complexes are indeed so stable that the three‐body dissociation of HHeF into H+He+F, exothermic by around 25–30 kcal mol−1, becomes endothermic. This effect is, however, accompanied by a strong decrease in the HHeF bending barrier. The complexation energies, ΔE, and the bending barriers, E*, are, in particular, related by the inverse relationship E*(kcal mol−1)=6.9exp[−0.041ΔE(kcal mol−1)]. Therefore the HHeFL complexes, which are definitely stable with respect to H+He+F+L (ΔE≈25–30 kcal mol−1), are predicted to have bending barriers of only 0.5–2 kcal mol−1. Overall, our calculations cast doubt on the conceivable stabilization of HHeF by complexation.

Country
Italy
Related Organizations
Keywords

ab initio calculations • fluorine • helium • noble gases • structure-property relationships

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!