Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fatty acids differentially modify the expression of urokinase type plasminogen activator receptor in monocytes

Authors: Anke, Assmann; Matthias, Möhlig; Martin, Osterhoff; Andreas F H, Pfeiffer; Joachim, Spranger;

Fatty acids differentially modify the expression of urokinase type plasminogen activator receptor in monocytes

Abstract

The urokinase plasminogen activator system with its receptor uPAR contributes to the migratory potential of macrophages, a key event in atherosclerosis. We here investigated whether free fatty acids (FFA) modify the expression for uPAR in the PMA-differentiated human monocyte/macrophage-like cell line U937. Two hundred micromolar palmitate induced a threefold increase of the uPAR mRNA expression. Although the mono- and polyunsaturated fatty acids oleate and linoleate also stimulated uPAR expression, oleate had a significantly lower effect than palmitate. The observed effects were time and dose dependent. Inhibition of PKC-and ERK-pathways resulted in a strong down-regulation of basal uPAR expression whereas the FFA induced up-regulation remained unchanged. In contrast, FFA induced uPAR up-regulation was abolished by the specific inhibition of p38 MAPK. In conclusion we demonstrate that uPAR expression in human monocytes/macrophages is differentially stimulated by FFA. These effects are partially mediated by the p38 MAP-kinase signaling pathway.

Keywords

Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Macrophages, Fatty Acids, Palmitates, Receptors, Cell Surface, p38 Mitogen-Activated Protein Kinases, Monocytes, Cell Line, Receptors, Urokinase Plasminogen Activator, Up-Regulation, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!