Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Modeling
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Computational insight into novel molecular recognition mechanism of different bioactive GAs and the Arabidopsis receptor GID1A

Authors: Hongxia, Duan; Dongling, Li; Hongchen, Liu; Desheng, Liang; Xinling, Yang;

Computational insight into novel molecular recognition mechanism of different bioactive GAs and the Arabidopsis receptor GID1A

Abstract

Gibberellin (GA) is an essential plant hormone and plays a significant role during the growth and development of the higher plants. The molecular recognition mode between GA and receptor Arabidopsis thaliana GIBBERELLIN INSENSITIVE DWARF1 A (AtGID1A) was investigated by molecular docking and dynamics simulations to clarify the selective perceived mechanism of different bioactive GA molecules to AtGID1A. The 6-COOH group of GA, especially its β configuration, was found to be an indispensable pharmacophore group for GA recognition and binding to AtGID1A. Not only does a strong salt bridge interaction between the 6β-COOH group of GA and Arg244 of AtGID1A play a very important role in the GA recognition of the receptor, but also an indirect water bridge interaction between the pharmacophore group 6β-COOH of GA and the residue Tyr322 of AtGID1A is essential for the GA binding to the receptor. The site-directed residues mutant modeling study on the receptor-binding pocket confirmed that the mutations of Arg244 and Tyr322 decreased the GA binding activity due to the disappearances of the salt bridge and the hydrogen bond interaction. The 3β-OH group of GA was well known to be necessary for the GA bioactivity due to its forming a unique hydrogen bond with Tyr127 of AtGID1A. In addition, the hydrophobic interaction between GA and AtGID1A was considered a necessary factor to lock the GA active conformation and stabilize the GA-GID1A complex structure. The novel molecular recognition mode will be beneficial in elucidating the GA regulation function on the growth and development of the higher plants.

Related Organizations
Keywords

Binding Sites, Arabidopsis Proteins, Protein Stability, Arabidopsis, Hydrogen Bonding, Receptors, Cell Surface, Molecular Dynamics Simulation, Gibberellins, Protein Structure, Secondary, Protein Structure, Tertiary, Molecular Docking Simulation, Structure-Activity Relationship, Plant Growth Regulators, Hydrophobic and Hydrophilic Interactions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!