
Mysterin, also known as RNF213, is an intracellular protein that forms large toroidal oligomers. Mysterin was originally identified in genetic studies of moyamoya disease (MMD), a rare cerebrovascular disorder of unknown etiology. While mysterin is known to exert ubiquitin ligase and putative mechanical ATPase activities with a RING finger domain and two adjacent AAA+ modules, its biological role is poorly understood. Here, we report that mysterin is targeted to lipid droplets (LDs), ubiquitous organelles specialized for neutral lipid storage, and markedly increases their abundance in cells. This effect was exerted primarily through specific elimination of adipose triglyceride lipase (ATGL) from LDs. The ubiquitin ligase and ATPase activities of mysterin were both important for its proper LD targeting. Notably, MMD-related mutations in the ubiquitin ligase domain of mysterin significantly impaired its fat-stabilizing activity. Our findings identify a unique new regulator of cytoplasmic LDs and suggest a potential link between the pathogenesis of MMD and fat metabolism.
Adenosine Triphosphatases, Ubiquitin-Protein Ligases, Hep G2 Cells, Lipase, Lipid Droplets, Zebrafish Proteins, Lipid Metabolism, HEK293 Cells, Protein Domains, Mutation, Animals, Humans, Moyamoya Disease, Research Articles, Zebrafish, HeLa Cells
Adenosine Triphosphatases, Ubiquitin-Protein Ligases, Hep G2 Cells, Lipase, Lipid Droplets, Zebrafish Proteins, Lipid Metabolism, HEK293 Cells, Protein Domains, Mutation, Animals, Humans, Moyamoya Disease, Research Articles, Zebrafish, HeLa Cells
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 114 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
