
arXiv: 1712.00764
The secrecy capacity problems over the general arbitrarily varying wiretap channel (AVWC), with respect to the maximal decoding error probability and strong secrecy criterion, are considered, where the channel state sequence may be known or unknown at the receiver. In the mean time, it is always assumed that the channel state sequence is known at the eavesdropper and unknown at the transmitter. Capacity results of both stochastic code (with random encoder and deterministic decoder) and random code (with random encoder and decoder) are discussed. This model includes the previous models of classic AVWC as special cases. Single-letter lower bounds on the secrecy capacities are given, which are proved to be the secrecy capacities when the main channel is less noisy than the wiretap channel. The coding scheme is based on Csiszar's almost independent coloring scheme and Ahlswede's elimination technique. Moreover, a new kind of typical sequence with respect to states is defined for this coding scheme. It is concluded that the secrecy capacity of stochastic code is identical to that of random code when the receiver knows the state sequence. Meanwhile, random code may achieve larger secrecy capacity when the state sequence is unknown by the receiver.
Submitted to IEEE Transaction on Information Theory
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
