Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 1997 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Expression Patterns of Developmental Control Genes in Normal andEngrailed-1Mutant Mouse Spinal Cord Reveal Early Diversity in Developing Interneurons

Authors: Michael P. Matise; Alexandra L. Joyner;

Expression Patterns of Developmental Control Genes in Normal andEngrailed-1Mutant Mouse Spinal Cord Reveal Early Diversity in Developing Interneurons

Abstract

The vertebrate spinal cord has long served as a useful system for studying the pattern of cell differentiation along the dorsoventral (d/v) axis. In this paper, we have defined the expression of several classes of genes expressed in restricted d/v domains in the intermediate region (IR) of the mouse spinal cord, in which most interneurons are generated. From this analysis, we have found that spinal cord interneurons and their precursors express unique combinations of transcription factors and Notch ligands at the onset of their differentiation. The domains of expression of a number of different classes of genes share similar boundaries, indicating that there could be a basic subdivision of the ventral IR into four distinct regions. This differential gene expression suggests that spinal cord interneurons acquire unique identities early in their development and that Notch signaling mechanisms may participate in the determination of cell fate along the d/v axis. Gene expression studies inEngrailed-1(En-1) mutants showed thatEn-1-expressing and other closely positioned classes of neurons do not require the homeodomain protein En-1 for their early pattern of differentiation. Rather, it is suggested thatEn-1may function to distinguish a subset of interneurons during the later maturation of the spinal cord.

Related Organizations
Keywords

Homeodomain Proteins, Gene Expression, Membrane Proteins, Cell Differentiation, Mice, Mutant Strains, Mice, Genes, Spinal Cord, Interneurons, Reference Values, Animals, Cellular Senescence, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 10%
Top 10%
Top 1%
hybrid