
The addition of naturally occurring polyamines and inorganic ions to an in vitro protein-synthesizing system improved the extent and fidelity of translation. In such an optimized system, regeneration of the nucleoside triphosphates with phosphoenolpyruvate and pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) reduced further the missense error frequency to the in vivo level as well as enhanced the extent of translation. The effect of nucleoside triphosphate regeneration was shown to be due primarily to the increase in the ratio of adenosine and guanosine triphosphates to their hydrolysis products and only marginally due to the increase in the absolute concentrations of the nucleoside triphosphates.
Poly U, Adenosine Triphosphate, Protein Biosynthesis, Guanosine Triphosphate, Guanosine Diphosphate, Adenosine Monophosphate
Poly U, Adenosine Triphosphate, Protein Biosynthesis, Guanosine Triphosphate, Guanosine Diphosphate, Adenosine Monophosphate
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 331 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
