
Our objective was to examine associations between glucose metabolism, as measured by (18)F-fluorodeoxyglucose positron emission tomography (FDG PET), and age and to evaluate the impact of carriage of an apolipoprotein E (APOE) ε4 allele on glucose metabolism and on the associations between glucose metabolism and age. We studied 806 cognitively normal (CN) and 70 amyloid-imaging-positive cognitively impaired participants (35 with mild cognitive impairment and 35 with Alzheimer's disease [AD] dementia) from the Mayo Clinic Study of Aging, Mayo Alzheimer's Disease Research Center and an ancillary study who had undergone structural MRI, FDG PET, and (11)C-Pittsburgh compound B (PiB) PET. Using partial volume corrected and uncorrected FDG PET glucose uptake ratios, we evaluated associations of regional FDG ratios with age and carriage of an APOE ε4 allele in CN participants between the ages of 30 and 95 years, and compared those findings with the cognitively impaired participants. In region-of-interest (ROI) analyses, we found modest but statistically significant declines in FDG ratio in most cortical and subcortical regions as a function of age. We also found a main effect of APOE ε4 genotype on FDG ratio, with greater uptake in ε4 noncarriers compared with carriers but only in the posterior cingulate and/or precuneus, lateral parietal, and AD-signature meta-ROI. The latter consisted of voxels from posterior cingulate and/or precuneus, lateral parietal, and inferior temporal. In age- and sex-matched CN participants the magnitude of the difference in partial volume corrected FDG ratio in the AD-signature meta-ROI for APOE ε4 carriers compared with noncarriers was about 4 times smaller than the magnitude of the difference between age- and sex-matched elderly APOE ε4 carrier CN compared with AD dementia participants. In an analysis in participants older than 70 years (31.3% of whom had elevated PiB), there was no interaction between PiB status and APOE ε4 genotype with respect to glucose metabolism. Glucose metabolism declines with age in many brain regions. Carriage of an APOE ε4 allele was associated with reductions in FDG ratio in the posterior cingulate and/or precuneus, lateral parietal, and AD-signature ROIs, and there was no interaction between age and APOE ε4 status. The posterior cingulate and/or precuneus and lateral parietal regions have a unique vulnerability to reductions in glucose metabolic rate as a function both of age and carriage of an APOE ε4 allele.
Adult, Aged, 80 and over, Male, Aging, Fluorine Radioisotopes, Heterozygote, Genotype, Apolipoprotein E4, Brain, Middle Aged, Glucose, Alzheimer Disease, Fluorodeoxyglucose F18, Positron-Emission Tomography, Humans, Cognitive Dysfunction, Female, Radiopharmaceuticals, Alleles, Aged
Adult, Aged, 80 and over, Male, Aging, Fluorine Radioisotopes, Heterozygote, Genotype, Apolipoprotein E4, Brain, Middle Aged, Glucose, Alzheimer Disease, Fluorodeoxyglucose F18, Positron-Emission Tomography, Humans, Cognitive Dysfunction, Female, Radiopharmaceuticals, Alleles, Aged
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 112 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
