
For vehicle routing problems (VRP) with time windows (VRPTW) solved by conventional cluster-first and route-second approach, temporal information is usually considered with vehicle routing but ignored in the process of clustering. The authors propose an alternative approach based on spatiotemporal partitioning to solving a large-scale VRPTW, considering jointly the temporal and spatial information for vehicle routing. A spatiotemporal representation for the VRPTW is presented that measures the spatiotemporal distance between two customers. The resulting formulation is then solved by a genetic algorithm developed for k-medoid clustering of large-scale customers based on the spatiotemporal distance. The proposed approach showed promise in handling large scale networks.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
