
arXiv: 1909.13144
We propose Additive Powers-of-Two~(APoT) quantization, an efficient non-uniform quantization scheme for the bell-shaped and long-tailed distribution of weights and activations in neural networks. By constraining all quantization levels as the sum of Powers-of-Two terms, APoT quantization enjoys high computational efficiency and a good match with the distribution of weights. A simple reparameterization of the clipping function is applied to generate a better-defined gradient for learning the clipping threshold. Moreover, weight normalization is presented to refine the distribution of weights to make the training more stable and consistent. Experimental results show that our proposed method outperforms state-of-the-art methods, and is even competitive with the full-precision models, demonstrating the effectiveness of our proposed APoT quantization. For example, our 4-bit quantized ResNet-50 on ImageNet achieves 76.6% top-1 accuracy without bells and whistles; meanwhile, our model reduces 22% computational cost compared with the uniformly quantized counterpart. The code is available at https://github.com/yhhhli/APoT_Quantization.
quantization, efficient neural network
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, Machine Learning (stat.ML), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
