Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

A Mammalian Chromatin Remodeling Complex with Similarities to the Yeast INO80 Complex

Authors: Jingji, Jin; Yong, Cai; Tingting, Yao; Aaron J, Gottschalk; Laurence, Florens; Selene K, Swanson; José L, Gutiérrez; +6 Authors

A Mammalian Chromatin Remodeling Complex with Similarities to the Yeast INO80 Complex

Abstract

The mammalian Tip49a and Tip49b proteins belong to an evolutionarily conserved family of AAA+ ATPases. In Saccharomyces cerevisiae, orthologs of Tip49a and Tip49b, called Rvb1 and Rvb2, respectively, are subunits of two distinct ATP-dependent chromatin remodeling complexes, SWR1 and INO80. We recently demonstrated that the mammalian Tip49a and Tip49b proteins are integral subunits of a chromatin remodeling complex bearing striking similarities to the S. cerevisiae SWR1 complex (Cai, Y., Jin, J., Florens, L., Swanson, S. K., Kusch, T., Li, B., Workman, J. L., Washburn, M. P., Conaway, R. C., and Conaway, J. W. (2005) J. Biol. Chem. 280, 13665-13670). In this report, we identify a new mammalian Tip49a- and Tip49b-containing ATP-dependent chromatin remodeling complex, which includes orthologs of 8 of the 15 subunits of the S. cerevisiae INO80 chromatin remodeling complex as well as at least five additional subunits unique to the human INO80 (hINO80) complex. Finally, we demonstrate that, similar to the yeast INO80 complex, the hINO80 complex exhibits DNA- and nucleosome-activated ATPase activity and catalyzes ATP-dependent nucleosome sliding.

Keywords

Adenosine Triphosphatases, Chromatography, DNA, Complementary, DNA Helicases, DNA, Chromatin Assembly and Disassembly, Catalysis, Chromatin, Chromosomes, Mass Spectrometry, Cell Line, Nucleosomes, Fungal Proteins, Adenosine Triphosphate, ATPases Associated with Diverse Cellular Activities, Humans, Electrophoresis, Polyacrylamide Gel, Carrier Proteins, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    193
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
193
Top 10%
Top 10%
Top 1%
gold