
Secretory phospholipase A2 group IIA (sPLA2-IIA) plays an important role in the pathogenesis of inflammatory diseases. Catalytic activity of this enzyme that generates arachidonic acid is a major target for development of anti-inflammatory agents. Independent of its catalytic activity, sPLA2-IIA induces pro-inflammatory signals in a receptor-mediated mechanism (e.g. through the M-type receptor). However, the M-type receptor is species-specific: sPLA2-IIA binds to the M-type receptor in rodents and rabbits, but not in human. Thus sPLA2-IIA receptors in human have not been established. Here we demonstrated that sPLA2-IIA bound to integrin alphavbeta3 at a high affinity (K(D)=2 x 10(-7) M). We identified amino acid residues in sPLA2-IIA (Arg-74 and Arg-100) that are critical for integrin binding using docking simulation and mutagenesis. The integrin-binding site did not include the catalytic center or the M-type receptor-binding site. sPLA2-IIA also bound to alpha4beta1. We showed that sPLA2-IIA competed with VCAM-1 for binding to alpha4beta1, and bound to a site close to those for VCAM-1 and CS-1 in the alpha4 subunit. Wild type and the catalytically inactive H47Q mutant of sPLA2-IIA induced cell proliferation and ERK1/2 activation in monocytic cells, but the integrin binding-defective R74E/R100E mutant did not. This indicates that integrin binding is required, but catalytic activity is not required, for sPLA2-IIA-induced proliferative signaling. These results suggest that integrins alphavbeta3 and alpha4beta1 may serve as receptors for sPLA2-IIA and mediate pro-inflammatory action of sPLA2-IIA, and that integrin-sPLA2-IIA interaction is a novel therapeutic target.
CHO Cells, U937 Cells, Integrin alpha4beta1, Integrin alphaVbeta3, Group II Phospholipases A2, Models, Biological, Monocytes, Cricetulus, Cricetinae, Animals, Humans, K562 Cells, Cell Proliferation, Protein Binding, Signal Transduction
CHO Cells, U937 Cells, Integrin alpha4beta1, Integrin alphaVbeta3, Group II Phospholipases A2, Models, Biological, Monocytes, Cricetulus, Cricetinae, Animals, Humans, K562 Cells, Cell Proliferation, Protein Binding, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 92 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
